Article Outline

· Introduction
· What is Messaging?
· What is DotNetMQ?
· Why a New Message Broker?
· The Need for a Message Broker
· What About existing Message Brokers
· Installing and Running DotNetMQ
· First Application Using DotNetMQ
· Registering Applications to DotNetMQ
· Developing Application1
· Developing Application2
· Transmit Rule Property of Message
· CommunicationWay Property of MDSClient
· ReConnectServerOnError Property of MDSClient
· AutoAcknowledgeMessages Property of MDSClient
· Configuring DotNetMQ
· Servers
· Applications
· Routing / Load Balancing
· Other Settings
· Messaging Over Network
· A Simple Application
· A Real Life Case: Distributed SMS Processor
· Request/Reply Style Messaging
· Service-Oriented Architecture on DotNetMQ
· Sample Application: SMS/Mail Sender
· Service
· Client
· Web Services Support
· Performance of DotNetMQ
· History
· References
Introduction

In this article, I will introduce a new and independent Open Source Message Queue system that is entirely built in C# and .NET framework 3.5. DotNetMQ is a message broker that has several features including guaranteed delivering, routing, load balancing, server graphs... so on. I will start by explaining messaging concepts and the need for message brokers. Then I will examine what DotNetMQ is and how to use it.

What Is Messaging?

Messaging is a way of asynchronous communication of applications running on same or different machines with reliable delivery. Programs communicate by sending packets of data called messages to each other [1].

A message may be a string, a byte array, an object... etc. Typically, a sender (producer) program creates a message and pushes it to a message queue and a receiver (consumer) program gets the message from the queue and processes it. The sender and receiver programs donâ€™t have to be running at the same time, since messaging is an asynchronous process. This is called loosely coupled communication.

On the other hand, a Web Service method call (Remote Method Invocation) is a type of tightly coupled and synchronous communication (both applications have to be running and available during the whole communication; if the Web Service is offline or an error occurs during the method call, the client application gets an exception).

Figure - 1: Simplest messaging of two applications.

In the figure above, two applications communicate over a message queue in a loosely coupled manner. If the receiver consumes messages slower than the sender produces it, the message count on the queue will increase. Also, the receiver may be offline while the sender is sending messages. In this situation, the receiver gets the messages from the queue when it becomes online (when it starts and joins the queue).

Message Queues are typically provided by Message Brokers. A Message Broker is a standalone application (service) that other applications connect to and send/receive messages. A Message Broker is responsible to store messages until a receiver receives them. A Message Broker can route messages across machines to deliver a message to the destination application and can try delivering the message until the receiver correctly handles it. A Message Broker is sometimes called a Message Oriented Middleware (MOM) or simply Message Queue (MQ).

What is DotNetMQ?

DotNetMQ is an open source Message Broker that has several features:

· Persistent or non-persistent messaging.

· Guaranteed delivery of persistent messages even in a system crash.

· Automatic and manual routing of messages in a custom machine graph.

· Supports multiple databases (MS SQL Server, MySQL, SQLite, and memory-based storage for now).

· Supports donâ€™t store, direct send style messaging.

· Supports Request/Reply style messaging.

· Easy to use client library to communicate with the DotNetMQ Message Broker.

· Built-in framework to easily construct RMI services upon message queues.

· Supports delivering messages to ASP.NET Web Services.

· GUI-based management and monitoring tool.

· Easy to install, manage, and use.

· Written entirely in C# (using .NET Framework 3.5).

I preferred to name DotNetMQ as MDS (Message Delivery System) when first creating it. Because it is designed not just to be a message queue, but also as a system that delivers messages directly to applications and an environment that provides a framework to build application services. I called it DotNetMQ since it is entirely developed using .NET and the DotNetMQ name is more memorable. So, itâ€™s original name (and internal project name) is MDS and the applications have many classes with the prefix MDS.

Why a New Message Broker?

The Need for a Message Broker

First, I will demonstrate a simple situation where a message broker is needed.

In my experiences in business life, I've observed really bad and uncommon asynchronous enterprise application integration solutions. Usually there is an application that runs on a server and performs some tasks and produces data, and then sends the result data to another application on another server. The second application performs other tasks on the data or evaluates the result (the servers are on the same network or connected over the internet). Also, the message data must be persistent. Even if the remote application is not working or the network is not available, the message must be delivered on the first chance.

Letâ€™s look at the design in the figure below.

[image: image1.png]Server-A

Figure - 2: A bad solution to integrate applications.

Application - 1 and Application - 2 are executable applications (or Windows services) and Sender Service is a Windows service. Application - 1 performs some task, produces data, and calls a Remote Web Service method on Server - B to transmit data. This Web Service inserts data into a database table. Application - 2 periodically checks the table for new incoming data rows and processes them (and deletes them from the table or marks them as processed to not process the same data again).

If an error occurs during the Web Service call or while processing data in the Web Service, data must not be lost and must be sent later. However, Application - 1 has other tasks to do, so it can not try to send data again and again. It simply inserts data into a database table. Another Windows service (or a thread in Application - 1, if the application always runs) checks this table periodically and tries to send data to the Web Service until data is successfully sent.

This scenario is really reliable (messages are guaranteed to be delivered) but is not an efficient way of communicating between two applications. This solution has some very critical problems:

· It takes a long time to develop (to code).

· Individual coding for all message types (or remote method calls). For a new Web Service method call, you must change all the services, applications, and database tables.

· Almost same software and structures must be developed (or copied and modified) for every similar service.

· Testing and maintenance of too many services/applications/databases after coding.

· Some applications and services periodically check the database even if there is no new message (if the database is not well indexed and optimized, this may consume serious system resources).

Message Brokers do all this job and takes all the responsibility to deliver messages to the remote application in the most efficient way. The same application integration using DotNetMQ is shown in the figure below.

[image: image2.png]Server-B

Server-A

Application - 2

Application -1

Figure - 3: Simple messaging by using DotNetMQ.

DotNetMQ is a standalone Windows service that runs on both Server - A and Server - B. Thus, you just need to write code to communicate with DotNetMQ. Using the DotNetMQ Client Library, it is very easy and fast to connect and send/receive messages to/from the DotNetMQ service. Application - 1 prepares the message, sets the destination, and passes the message to the DotNetMQ Broker. DotNetMQ brokers will deliver the message to Application - 2 in the most efficient and fastest way.

What About Existing Message Brokers

It is clear to see that there is a need for Message Brokers to integrate applications. I searched the web, and read books to find a free (and Open Source, if available) Message Broker that is easy to use with .NET. Letâ€™s talk about what I found:

· Apache ActiveMQ (http://activemq.apache.org): It is Open Source and implements JMS (Java Message Service is a standard API for messaging in the Java world). It has also a .NET client library. I read a complete book "ActiveMQ in Action" to learn more and I developed some simple applications. Even though I read the book, I did not see an easy and reliable way to construct an ActiveMQ server graph that worked together and routed messages. I also did not see a way to set the destination server for a message. It routes messages automatically but I can not control the routing efficiently. I understood that it is commonly used with Apache Camel (http://camel.apache.org) to achieve common application integration patterns. Apache Camel is also another world to discover, and even worse, it is just for Java. Finally, I think that it is not simple enough to use and especially to configure, monitor, and manage it. So I gave up working on ActiveMQ.

· MSMQ (http://msdn.microsoft.com/en-us/library/ms711472(VS.85).aspx): This is a solution from Microsoft and it is the most suitable framework to use with .NET applications. It is easy to use and learn, and it has tools to monitor queues and messages. It is especially very suitable for asynchronous communication of applications that are running on the same machine or can directly connect to the same machine. But I could not find a built-in solution to construct a graph of MSMQ servers that route messages. Since routing is my first start point, I eliminated this Broker.

· RabbitMQ (http://www.rabbitmq.com): It is developed using the Erlang programming platform (that is developed by Ericsson). You need to install Erlang first. I spent a lot of time to install, configure, and write a sample application. It has a .NET client but I got many errors when trying to develop and run a simple application. It was very hard to install and to make two rabbitMQ Brokers work together on two different servers. After a few days, I gave up because I thought it must not be that hard to learn and to start developing applications.

· OpenAMQ (http://www.openamq.org), ZeroMQ (http://www.zeromq.org): I examined these brokers overall but I found that I can not easily do what I want to using .NET.

· Others: I also found a few other projects but they have important features missing like routing, persistent messaging, request/reply messaging... etc.

You see that there is no Message Broker that is developed entirely in .NET in the list above.

From a user perspective, I just want to pass "message data, destination server, and application name" to my local Broker. I am not interested in the rest. It will route a message over the network as many times it requires and delivers the message to my destination application on the destination server. My messaging system must provide this simplicity for me. This was my first start point and I evaluated Message Brokers according to that point. The figure below shows what I want.

[image: image3.png]

Figure - 4: Automatic routing messages in a Message Broker servers graph.

Application - 1 passes a message to Message Broker in the local server (Server - A):

· Destination server: Server - D
· Destination application: Application - 2
· Message Data: application specific data
Server - A has no direct connection to Server - D. So the Message Brokers forward the message over the servers (the message is transmitted through Server - A, Server - B, Server - C, and Server - D sequentially) and the message finally reaches the Message Broker in Server - D to deliver the message to Application - 2. Note that there is another instance of Application - 2 running on Server - E, but it does not receive this message, since the destination server of the message is Server - D.

DotNetMQ provides this functionality and simplicity. It finds the best (shortest) path from the source server to the destination server on the graph and forwards the message.

After this comprehensive introduction, letâ€™s see how to use DotNetMQ in practice.

Installing and Running DotNetMQ

There is no auto install for now, but it is very easy to install DotNetMQ. download and unzip the binaries download file from the top of the article. Just copy everything from there to C:\Program Files\DotNetMQ\ and run INSTALL_x86.bat (or INSTALL_x64.bat if you are using 64bit operating system).

You can check Windows services to see if DotNetMQ is installed and working.

First Application Using DotNetMQ

Letâ€™s see DotNetMQ in action. To make the first application most simple, I assume that there are two console applications running on the same machine (in fact (as we will see later in this document) there is no significant difference if the applications are in different machines; the only difference is properly setting the name of the destination server in the message).

· Application1: Gets a string message from the user and sends it to Application2.

· Application2: Writes incoming messages to the console screen.

Registering Applications to DotNetMQ

We need to register applications once to use them with DotNetMQ. It is a very simple process. Run DotNetMQ Manager (MDSManager.exe in the DotNetMQ program folder (default: C:\Program Files\DotNetMQ\)), and open Application List from the Applications menu. Click the Add New Application button and enter a name for the application.

Add the Application1 and Application2 applications to DotNetMQ as described above. Finally, your application list must be like below.

[image: image4.jpg]Application Name

All Applications

Connected Clients

Application1 o

Remove Ap

Add new Application

Figure - 5: Application list screen of the DotNetMQ Manager tool.

This screen shows the registered applications to DotNetMQ. The Connected Clients column shows the count of instances of the application that are currently connected to DotNetMQ. It is not needed to restart DotNetMQ because of the changes in this screen.

Developing Application1

Create a new console application with name Application1 in Visual Studio and add a reference to MDSCommonLib.dll that provides necessary classes to connect to DotNetMQ. Then write the following code in the Program.cs file:

[image: image5.png]

Collapse

using System;

using System.Text;

using MDS.Client;

namespace Application1

{

 class Program

 {

 static void Main(string[] args)

 {

 //Create MDSClient object to connect to DotNetMQ

 //Name of this application: Application1

 var mdsClient = new MDSClient("Application1");

 //Connect to DotNetMQ server

 mdsClient.Connect();

 Console.WriteLine("Write a text and press enter to send " +

 "to Application2. Write 'exit' to stop application.");

 while (true)

 {

 //Get a message from user

 var messageText = Console.ReadLine();

 if (string.IsNullOrEmpty(messageText) || messageText == "exit")

 {

 break;

 }

 //Create a DotNetMQ Message to send to Application2

 var message = mdsClient.CreateMessage();

 //Set destination application name

 message.DestinationApplicationName = "Application2";

 //Set message data

 message.MessageData = Encoding.UTF8.GetBytes(messageText);

 //Send message

 message.Send();

 }

 //Disconnect from DotNetMQ server

 mdsClient.Disconnect();

 }

 }

}

When creating the MDSClient object, we pass the application name which connects to DotNetMQ. With this constructor, we connect to DotNetMQ on the local server (127.0.0.1) with the default port number (10905). Overloaded constructors can be used to connect to another server and port.

The CreateMessage method of MDSClient returns an object of type IOutgoingMessage. The MessageData property is the actual data to send to the destination application. It is a byte array. We are converting the user input text to a byte array using UTF8 encoding. TheDestinationApplicationName and DestinationServerName properties are used to set the destination address of message. If we donâ€™t specify the destination server, it is assumed as the local server. Finally, we send the message.

Developing Application2

Create a new console application with name Application2 in Visual Studio, add a reference to MDSCommonLib.dll and write the following code:

[image: image6.png]

Collapse

using System;

using System.Text;

using MDS.Client;

namespace Application2

{

 class Program

 {

 static void Main(string[] args)

 {

 //Create MDSClient object to connect to DotNetMQ

 //Name of this application: Application2

 var mdsClient = new MDSClient("Application2");

 //Register to MessageReceived event to get messages.

 mdsClient.MessageReceived += MDSClient_MessageReceived;

 //Connect to DotNetMQ server

 mdsClient.Connect();

 //Wait user to press enter to terminate application

 Console.WriteLine("Press enter to exit...");

 Console.ReadLine();

 //Disconnect from DotNetMQ server

 mdsClient.Disconnect();

 }

 /// <summary>
 /// This method handles received messages from other applications via DotNetMQ.

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e">Message parameters</param>
 static void MDSClient_MessageReceived(object sender, MessageReceivedEventArgs e)

 {

 //Get message

 var messageText = Encoding.UTF8.GetString(e.Message.MessageData);

 //Process message

 Console.WriteLine();

 Console.WriteLine("Text message received : " + messageText);

 Console.WriteLine("Source application : " + e.Message.SourceApplicationName);

 //Acknowledge that message is properly handled

 //and processed. So, it will be deleted from queue.

 e.Message.Acknowledge();

 }

 }

}

Creating the MDSClient object is similar to that in Application1 but the application name is Application2. To receive messages for an application, it needs to register to the MessageReceived event of MDSClient. Then we connect to DotNetMQ and stay connected until the user presses Enter.

When a message is sent to Application2, the MDSClient_MessageReceived method handles the event. We get the message from the Message property of MessageReceivedEventArgs. The type of message is IIncomingMessage. The MessageData property of IIncomingMessage contains the actual message data that is sent by Application1. Since it is a byte array, we are converting it to string using UTF8 encoding. We write the message text that is sent by Application1 to the console screen.

[image: image7.png]ite a text and press enter to send to Applicationz. Urite 'exit’ to stop applifl

Applcation/ Applcation2/ b/ Debug/Appl:

@ test nessage from appt
Appiicationt

Hello App2. this is my second and last m
Applicationt

Figure - 6: Application1 sends two messages to Application2 over DotNetMQ.

After processing an incoming message, it is needed to Acknowledge the message. That means the message is properly received and correctly processed. DotNetMQ then removes the message from message queue. We can also reject a message using the Reject method (if we can not process the message on an error case). In this situation, the message turns back to the message queue and will be sent later to the destination application (or it will be sent to another instance of Application2 on the same server if exists). This is a powerful mechanism of the DotNetMQ system. Thus, it is guarantied that the message can not be lost and it is absolutely processed. If you do not acknowledge or reject a message, it is assumed as rejected. So, even if your application crashes, your message is sent back to your application later.

If you run multiple instance of the Application2, which one will receive messages? In this case, DotNetMQ delivers messages to applications sequentially. So, you can create multi sender/receiver systems. A message is received by only one instance of applications (applications receives different messages). DotNetMQ provides all functionallity and synchronization.

Transmit Rule Property of Message

Before sending a message, you can set the Transmit Rule of a message like this:

[image: image8.png]

Collapse

message.TransmitRule = MessageTransmitRules.NonPersistent;

There are three types of transmit rules:

· StoreAndForward: This is the default transmit rule. Messages are persistent, can not be lost, and are guaranteed to be delivered. If the Send method does not throw an Exception, then the message is correctly received by DotNetMQ and stored in the database. It is stored in the database until the destination application receives and acknowledges it.

· NonPersistent: Messages are not stored in database. It is the fastest way of sending messages. A message is lost only if the DotNetMQ server stops.

· DirectlySend: This is an exclusive feature of DotNetMQ. This type of messages are directly sent to the application. The sender application is blocked until the receiver acknowledges a message. So, if the sender does not get any exception while calling the Send method, it means the message is properly received and acknowledged by the receiver application. If an error occurs while transmitting a message, the receiver is offline, or the receiver rejects the message, the sender gets an exception on the Send method. This rule correctly works even if applications are on different servers (even if there are many servers between applications).

Since the default transmit rule is StoreAndForward, letâ€™s try that:

· Run Application1 (while Application2 is not running), write some messages, and close application.

· Run Application2, you will see that your messages are received by Application2 and are not lost.

Even if you stop the DotNetMQ service from Windows services after sending messages from Application1, your messages wonâ€™t be lost. That is called persistence.

CommunicationWay Property of MDSClient

By default, an application can send and receive messages using MDSClient (CommunicationWays.SendAndReceive). If an application doesnâ€™t want to receive messages, it must set the CommunicationWay property to CommunicationWays.Send. This property can be changed before connection or during communication with DotNetMQ.

ReConnectServerOnError Property of MDSClient

By default, MDSClient automatically reconnects to DotNetMQ if it disconnects. So, even if you restart DotNetMQ, it is not needed to restart your applications that are connected to DotNetMQ. You can set the ReConnectServerOnError property to false to disable auto-reconnect.

AutoAcknowledgeMessages Property of MDSClient

By default, You must explicitly acknowledge messages in MessageReceived event. Otherwise, it is assumed as Rejected. If you want oppisite of this approach, you must set AutoAcknowledgeMessages property as true. In this case, if your MessageReceived event handler does not throw an exception or you do not acknowledge/reject the message explicitly, it is automatically acknowledged (If an exception is thrown, the message is rejected).

Configuring DotNetMQ

You can configure DotNetMQ in two ways: Using XML settings files or DotNetMQ Manager (Windows Forms application). Here, I will show two approaches. Some of the configurations require you to restart DotNetMQ while others do not.

Servers

You may run DotNetMQ on only one server. In this situation, there is no need to configure anything for the servers. But if you want to run DotNetMQ on more than one server and make them communicate with others, you must define your server graph.

A server graph consists of two or more nodes. Each node is a server that has an IP address and TCP port (that is used by DotNetMQ). You can configure/design a server graph by using the DotNetMQ Manager.

[image: image9.png]=/ DotNetMQ Server Graph

192.168.10.105

emre_pc
192.168.10.244

webserverl
192.168.10.263

out_server
85.19.100.185

webserver2
192.168.10.44

Figure - 8: DotNetMQ Server Graph managing.

In the figure above, you see a server graph that consists of five nodes. The red node represents this server (this server means the server that you are connected with DotNetMQ Manager). A line means that there is a connection (and they can send/receive messages) between two nodes (they are called adjacent nodes). The name of the server/node in a graph is important and is used when sending messages to the server.

You can double-click a server in the graph to change its properties. To connect two servers, hold Ctrl, click the first one then the second one (to disconnect, do the same thing again). You can set a server as this server by right clicking and selecting Set as this server. You can also delete a server from the graph or add a new server by using the right click menu. Lastly, you can add move servers by dragging.

After designing your server graph, you must click the Save & Update Graph button to save the changes. The changes are saved to the MDSSettings.xml file in your DotNetMQ installation folder. You must restart DotNetMQ to apply the changes.

For the server graph above, the corresponding MDSSettings.xml settings are shown below:

[image: image10.png]

Collapse

<?xml version="1.0" encoding="utf-8"?>
<MDSConfiguration>
 <Settings>
 ...

 </Settings>
 <Servers>
 <Server Name="halil_pc" IpAddress="192.168.10.105"

 Port="10099" Adjacents="emre_pc" />
 <Server Name="emre_pc" IpAddress="192.168.10.244" Port="10099"

 Adjacents="halil_pc,out_server,webserver1,webserver2" />
 <Server Name="out_server" IpAddress="85.19.100.185"

 Port="10099" Adjacents="emre_pc" />
 <Server Name="webserver1" IpAddress="192.168.10.263"

 Port="10099" Adjacents="emre_pc,webserver2" />
 <Server Name="webserver2" IpAddress="192.168.10.44"

 Port="10099" Adjacents="emre_pc,webserver1" />
 </Servers>
 <Applications>
 ...

 </Applications>
 <Routes>
 ...

 </Routes>
</MDSConfiguration>
Surely, this configuration is made according to your real network. You must install DotNetMQ on all servers in the graph. Also, you must configure the same graph on all servers (you can easily copy the server nodes from the XML to the other servers).

DotNetMQ uses a short path algorithm to send the messages (if no manual route is defined in the settings file). Consider an Application A that is running on halil_pc and sending a message to Application B on webserver2. The path is simply: Application A -> halil_pc -> emre_pc -> webserver2 -> Application B. halil_pc knows the next forwarding server (emre_pc) by using the server graph definition.

Lastly, the MDSSettings.design.xml file contains the server design information (locations of nodes on the screen). This is just needed in the server graph window in DotNetMQ Manager and not needed for the runtime of DotNetMQ.

Applications

As shown in Figure - 5, you can add/remove applications that are using DotNetMQ as a message broker. It is not needed to restart DotNetMQ for these changes. Application settings are also saved to the MDSSettings.xml file as shown below.

[image: image11.png]

Collapse

<?xml version="1.0" encoding="utf-8"?>
<MDSConfiguration>
 ...

 <Applications>
 <Application Name="Application1" />
 <Application Name="Application2" />
 </Applications>
 ...

</MDSConfiguration>
An application must be in this list to be able to connect to DotNetMQ. If you directly change the XML file, you must restart the DotNetMQ server.

Routing / Load Balancing

A usable feature of DotNetMQ is routing. Routing settings (for now) are configured only in the XML settings file (MDSSettings.xml). You can see two types of routing in the settings file below:

[image: image12.png]

Collapse

<?xml version="1.0" encoding="utf-8" ?>
<MDSConfiguration>
 ...

 <Routes>
 <Route Name="Route-App2" DistributionType="Sequential" >
 <Filters>
 <Filter DestinationServer="this" DestinationApplication="Application1" />
 </Filters>
 <Destinations>
 <Destination Server="Server-A" Application="Application1" RouteFactor="1" />
 <Destination Server="Server-B" Application="Application1" RouteFactor="1" />
 <Destination Server="Server-C" Application="Application1" RouteFactor="1" />
 </Destinations>
 </Route>
 <Route Name="Route-App2" DistributionType="Random" >
 <Filters>
 <Filter DestinationServer="this" DestinationApplication="Application2" />

 <Filter SourceApplication="Application2" TransmitRule="StoreAndForward" />

 </Filters>
 <Destinations>
 <Destination Server="Server-A" Application="Application2" RouteFactor="1" />
 <Destination Server="Server-B" Application="Application2" RouteFactor="3" />
 </Destinations>
 </Route>
 </Routes>
 ...

</MDSConfiguration>
A Route node has two attribute: Name is a user-friendly name of the Route entry (does not affect routing) and DistributionType is the strategy of the routing. There are two types of routing strategies:

· Sequential: Messages are routed to destination servers sequentially. The RouteFactor of destinations are considered while distributing.

· Random: Messages are routed to destination servers randomly. Probability of selecting the server A is: (RouteFactor(A) / (Total of all RouteFactor values of all destinations in the route definition)).

Filters are used to decide which route to use for a message. If properties of a message are suitable for one of the filters, the message is routed. There are five conditions (XML attributes) to define a filter:

· SourceServer: The first source server of the message. Can be this to indicate this server.

· SourceApplication: Sender application of the message.

· DestinationServer: Last destination server of the message. Can be this to indicate this server.

· DestinationApplication: The application that will receive the message.

· TransmitRule: One of these transmit rules: StoreAndForward, DirectlySend, or NonPersistent.

If one or more condition is not declared, it is not considered while filtering messages. So, if all the conditions are empty (or not declared), all messages are fit to this filter. A filter is selected for a message only if all the conditions are fit to the message. If a message is proper for (at least) one of the filters of a route, the route is selected and used.

Destinations are used to route messages to other servers. One of the destinations is selected according to the DistributionType property of the Route entry (explained before). A destination must define three attributes:

· Server: Destination server. Can be this to indicate this server.

· Application: Destination application. Destination application is generally defined as same as the original destination, but you can redirect a message to another application than its original destination application.

· RouteFactor: This property is used to indicate the relative selection ratio of a destination. The RouteFactor attribute can be used for load balancing. If you want to distribute messages to all servers equally, you can define this as 1 for all destinations. But if you have two servers and one of them is more powerful than other, you can select the first server twice more than the second one by defining the appropriate route factors.

You must restart DotNetMQ after changing routes.

Other Settings

DotNetMQ currently supports three storage types: SQLite (default), MySQL, and Memory. You can change the storage type in the MDSSettings.xml file.

[image: image13.png]

Collapse

<?xml version="1.0" encoding="utf-8"?>
<MDSConfiguration>
 ...

 <Settings>
 <Setting Key="ThisServerName" Value="halil_pc" />
 <Setting Key="StorageType" Value="SQLite" />
 </Settings>
 ...

</MDSConfiguration>
The storage types must be one of the following values:

· SQLite: Uses the SQLite database system. This is the default storage type. Uses the {DotNetMQ-Install-Directory}\SqliteDB\MDS.s3db file as the database.

· MSSQL: Uses a Microsoft SQL Server database. You must supply the ConnectionString setting as the connection string (will be explained).

· MySQL-ODBC: Uses a MySQL database with ODBC. You must supply the ConnectionString setting as the connection string.

· MySQL-Net: Uses a MySQL database with a .NET Adapter. You must supply the ConnectionString setting as connection string.

· Memory: Uses memory as the storage device. In this case, persistent messages are lost if DotNetMQ is stopped.

Here is a sample configuration to use the MySQL-ODBC storage type:

[image: image14.png]

Collapse

<Settings>
 <Setting Key="ThisServerName" Value="halil_pc" />
 <Setting Key="StorageType" Value="MySQL-ODBC" />
 <Setting Key="ConnectionString"

 Value="uid=root;server=localhost;driver={MySQL ODBC 3.51 Driver};database=mds" />
 </Settings>
You can find needed files in the Setup\Databases folder (in the DotNetMQ installation folder) that are needed to create database and tables that are used by DotNetMQ. Feel free to ask questions to me if you have a problem.

There is also another setting to define the name of the current/this server (ThisServerName). It must be one of the servers in the Servers section. If you use the DotNetMQ Manager to edit your servers graph, it is automatically set.

Messaging Over Network

Sending a message to an application on a remote server is easy as sending a message to an application on the current server.

A Simple Application

Let's consider the network below.

[image: image15.png]ServerA (89.92.106.50)

Application1

Application2

Serverc (85.104.28.183)

ServerB (84.76.18.213)

Figure - 8: Messaging of two applications over network with DotNetMQ.

There is an application (Application1) running on ServerA that wants to send a message to another application (Application2) on ServerC and there is no direct connection between ServerA and ServerC because of the firewall rules. Let's change the applications we developed in the First Applications section.

There is not even a single change in Application2. Just run Application2 in ServerC and wait for incoming messages.

There is a minor change in Application1 on how we send a message. It must set the DestinationServerName of the message as ServerC.

[image: image16.png]

Collapse

var message = mdsClient.CreateMessage();

message.DestinationServerName = "ServerC"; //Set destination server name here!

message.DestinationApplicationName = "Application2";

message.MessageData = Encoding.UTF8.GetBytes(messageText);

message.Send();

That's all. You do not have to know where ServerC is, for a direct connection to ServerC... They are all defined in the DotNetMQ settings. Note that if you do not set the DestinationServerName of a message, it is assumed as current/this server and DotNetMQ sends the message to the application on the same server. Also, if you define the necessary routings, you don't have to set the destination server: it is routed by DotNetMQ automatically.

Surely, DotNetMQ settings must be properly set according to the server connections (server graph), and Application1 and Application2 must be registered to the DotNetMQ server as described in the Configuring DotNetMQ section.

A Real Life Case: Distributed SMS Processor
As you already saw, DotNetMQ can be used to build distributed, load balanced application systems. In this section, I'll discuss a real life scenario: A distributed SMS process system.

Assume that there is a short message (SMS) service that is used for polling a music competition. After all competitors sing their songs, audience send messages like "VOTE 103" to our SMS service to vote for their favourite competitor (103 is a sample code to vote for a specific competitor). And assume that this polling is done in just 30 minutes and approximately five million people will send SMSs to our service.

We will receive every message, process it (parse the SMS text, update the database to increase the vote count of the competitor) and send a confirmation message to the sender of the SMS. We must receive messages from two servers, process messages on four servers, and send confirmation messages from two servers. We have totally eight servers. Let's see our complete system diagram:

[image: image17.png]

Figure - 9: A distributed SMS processing system

There are three types of applications: Receiver, Processor, and Sender. You can use DotNetMQ as the message queue and load balancer in such a scenario to build a distributed, scalable message processing system by configuring the server graph and routes as described in the Configuring DotNetMQ section.

Request/Reply Style Messaging with DotNetMQ

In most cases, an application sends a message to another application and gets a response message. DotNetMQ has built-in support for this type of messaging. Think about a service that is used to query a stock status. There are two types of messages:

[image: image18.png]

Collapse

[Serializable]

public class StockQueryMessage
{

 public string StockCode { get; set; }

}

[Serializable]

public class StockQueryResultMessage
{

 public string StockCode { get; set; }

 public int ReservedStockCount { get; set; }

 public int TotalStockCount { get; set; }

}

A simple Stock server code is shown below.

[image: image19.png]

Collapse

using System;

using MDS;

using MDS.Client;

using StockCommonLib;

namespace StockServer

{

 class Program

 {

 static void Main(string[] args)

 {

 var mdsClient = new MDSClient("StockServer");

 mdsClient.MessageReceived += MDSClient_MessageReceived;

 mdsClient.Connect();

 Console.WriteLine("Press enter to exit...");

 Console.ReadLine();

 mdsClient.Disconnect();

 }

 static void MDSClient_MessageReceived(object sender,

 MessageReceivedEventArgs e)

 {

 //Get message

 var stockQueryMessage =

 GeneralHelper.DeserializeObject(e.Message.MessageData)

 as StockQueryMessage;

 if (stockQueryMessage == null)

 {

 return;

 }

 //Write message content

 Console.WriteLine("Stock Query Message for: " +

 stockQueryMessage.StockCode);

 //Get stock counts from a database...

 int reservedStockCount;

 int totalStockCount;

 switch (stockQueryMessage.StockCode)

 {

 case "S01":

 reservedStockCount = 14;

 totalStockCount = 80;

 break;

 case "S02":

 reservedStockCount = 0;

 totalStockCount = 25;

 break;

 default: //Stock does not exists!

 reservedStockCount = -1;

 totalStockCount = -1;

 break;

 }

 //Create a reply message for stock query

 var stockQueryResult = new StockQueryResultMessage

 {

 StockCode = stockQueryMessage.StockCode,

 ReservedStockCount = reservedStockCount,

 TotalStockCount = totalStockCount

 };

 //Create a MDS response message to send to client

 var responseMessage = e.Message.CreateResponseMessage();

 responseMessage.MessageData =

 GeneralHelper.SerializeObject(stockQueryResult);

 //Send message

 responseMessage.Send();

 //Acknowledge the original request message.

 //So, it will be deleted from queue.

 e.Message.Acknowledge();

 }

 }

}

The stock server listens for incoming StockQueryMessage objects and sends a StockQueryResultMessage to the sender. To be simple, I did not select stocks from a database. A response message is created by the CreateResponseMessage() method of the incoming message. Lastly, the message is acknowledged after a response is sent. Now I will show a simple stock client code to get stock information from a server:

[image: image20.png]

Collapse

using System;

using MDS;

using MDS.Client;

using MDS.Communication.Messages;

using StockCommonLib;

namespace StockApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Press enter to query a stock status");

 Console.ReadLine();

 //Connect to DotNetMQ

 var mdsClient = new MDSClient("StockClient");

 mdsClient.MessageReceived += mdsClient_MessageReceived;

 mdsClient.Connect();

 //Create a stock request message

 var stockQueryMessage = new StockQueryMessage { StockCode = "S01" };

 //Create a MDS message

 var requestMessage = mdsClient.CreateMessage();

 requestMessage.DestinationApplicationName = "StockServer";

 requestMessage.TransmitRule = MessageTransmitRules.NonPersistent;

 requestMessage.MessageData = GeneralHelper.SerializeObject(stockQueryMessage);

 //Send message and get response

 var responseMessage = requestMessage.SendAndGetResponse();
 //Get stock query result message from response message

 var stockResult = (StockQueryResultMessage)

 GeneralHelper.DeserializeObject(responseMessage.MessageData);

 //Write stock query result

 Console.WriteLine("StockCode = " + stockResult.StockCode);

 Console.WriteLine("ReservedStockCount = " + stockResult.ReservedStockCount);

 Console.WriteLine("TotalStockCount = " + stockResult.TotalStockCount);

 //Acknowledge received message

 responseMessage.Acknowledge();

 Console.ReadLine();

 //Disconnect from DotNetMQ server.

 mdsClient.Disconnect();

 }

 static void mdsClient_MessageReceived(object sender,

 MessageReceivedEventArgs e)

 {

 //Simply acknowledge other received messages

 e.Message.Acknowledge();

 }

 }

}

In the sample above, TransmitRule is selected as NonPersistent to show a sample usage. Surely, you can send StoreAndForward (persistent) messages. Here is a sample screenshot of the running applications:

[image: image21.png]

Figure - 10: Request/Reply style messaging applications.

Service-Oriented Architecture in DotNetMQ

SOA (Service-Oriented Architecture) has been a popular concept for many years. Web Services and WCF are two major solutions to SOA. Generally, it is not expected to support SOA from a Message Queue system. Also messaging is an asynchronous and loosely coupled process while a Web Service method call is typically synchronous and tight coupled. Even (as you saw in the previous sample applications) messaging is not as easy as calling a remote method. But when your message count increases, your application becomes complicated and harder to maintain.

DotNetMQ supports remote method invocation mechanism upon persistent or non-persistent messages. So you can call a remote method asynchronously that is guaranteed to be called and guaranteed to be succeed!

Sample Application: SMS/Mail Sender
Here we will develop a simple service that can be used to send SMS and e-mail. Maybe it is not needed to write a service for sending an email/SMS, all applications can do it themselves. But imagine that you have many applications that are sending emails. What if the mail server has a problem while sending an email? The application must try until it successfully sends the email. So you must build a queue mechanism in your application to try and send the email again and again. At the worse case, your application may be a short time running application (such as a Web Service) or must be closed before sending the email. But you have to send the email when the mail servers come online and the mail must not be lost.

In this case, you can develop a separate mail/SMS service that will try to send the SMS/mail until it is successfully sent. You can develop a mail service that receives mail requests over DotNetMQ and acknowledge requests (messages) only if the email is successfully sent. If sending fails, just do not acknowledge (or reject) the message, thus it will be tried again later.

Service

We will first develop the mail/SMS service. To do this, we must define a class that is delivered from the MDSService base class:

[image: image22.png]

Collapse

using System;

using MDS.Client.MDSServices;

namespace SmsMailServer

{

 [MDSService(Description = "This service is a " +

 "sample mail/sms service.", Version = "1.0.0.0")]

 public class MyMailSmsService : MDSService
 {

 //All parameters and return values can be defined.

 [MDSServiceMethod(Description = "This method is used send an SMS.")]

 public void SendSms(

 [MDSServiceMethodParameter("Phone number to send SMS.")] string phone,

 [MDSServiceMethodParameter("SMS text to be sent.")] string smsText)

 {

 //Process SMS

 Console.WriteLine("Sending SMS to phone: " + phone);

 Console.WriteLine("Sms Text: " + smsText);

 //Acknowledge the message

 IncomingMessage.Acknowledge();

 }

 //You do not have to define any parameters

 [MDSServiceMethod]

 public void SendEmail(string emailAddress, string header, string body)

 {

 //Process email

 Console.WriteLine("Sending an email to " + emailAddress);

 Console.WriteLine("Header: " + header);

 Console.WriteLine("Body : " + body);

 //Acknowledge the message

 IncomingMessage.Acknowledge();

 }

 // A simple method just to show return values.

 [MDSServiceMethod]

 [return: MDSServiceMethodParameter("True, if phone number is valid.")]

 public bool IsValidPhone([MDSServiceMethodParameter(

 "Phone number to send SMS.")] string phone)

 {

 //Acknowledge the message

 IncomingMessage.Acknowledge();

 //Return result

 return (phone.Length == 10);

 }

 }

}

As you can see, it is just a regular C# class decorated with attributes. The MDSService and MDSServiceMethod attributes must be defined and all other attributes are optional (but it is good to write them). We will see soon why they are used). Your service methods must have the MDSServiceMethod attribute. If you do not want to expose some of your methods, simply do not add the MDSServiceMethod attribute.

We must also acknowledge the message in the service method. Otherwise, the message (that caused this method call) will not be deleted from the message queue and our method will be called again. We can also reject the message if we can not process it (for example, if the mail server is not working and we can not send emails). If we reject the message, it will be sent to us later (reliability). You can reach the original message using the IncomingMessage property of the MDSService class. Also, you can get a remote application's (that called the service method) information using the RemoteApplication property.

After creating a proper service class, we must create an application to run it. Here is a simple console application that runs our MyMailSmsService:

[image: image23.png]

Collapse

using System;

using MDS.Client.MDSServices;

namespace SmsMailServer

{

 class Program

 {

 static void Main(string[] args)

 {

 using (var service =

 new MDSServiceApplication("MyMailSmsService"))

 {

 service.AddService(new MyMailSmsService());

 service.Connect();

 Console.WriteLine("Press any key to stop service");

 Console.ReadLine();

 }

 }

 }

}

As you can see, it is just three lines of code to create and run a service. Since MDSService is disposable, you can use a using statement. Also, you can close the service manually with the Disconnect method of MDSServiceApplication. You can run more than one service on a single MDSServiceApplication using the AddService method.

Client
To develop an application that uses a DotNetMQ service, you must create a service proxy (like Web Services and WCF). To do this, you can use the MDSServiceProxyGenerator tool. First, compile your service project, than run MDSServiceProxyGenerator.exe (in the DotNetMQ installation folder).

[image: image24.png]8 D3 e Proy Generor
‘Service Class Selection

T s SmtisenersystemSnatiiSener b Debug Sntsee m‘
T srvatserer yviadsmeservee

proxy Class Generation

Figure - 11: Generating a proxy class for a service in DotNetMQ.

Select your service assembly file (SmsMailServer.exe in this sample project). You can select the service class or generate proxies of all services in a given assembly. Enter a namespace and the target folder to generate the proxy class. After generating the proxy class, you can add it to your project.

I will not show the internals of this proxy class and you do have to know it (you can see it in the source code, it is a very simple class). Your method/parameter attributes are used to generate the code comments in this proxy file.

After adding the generated proxy class to our project, we can simply send messages to the service just like simple method calls:

[image: image25.png]

Collapse

using System;

using MDS.Client;

using MDS.Client.MDSServices;

using SampleService;

namespace SmsMailClient

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Press enter to test SendSms method");

 Console.ReadLine();

 //Application3 is name of an application that sends sms/email.

 using (var serviceConsumer = new MDSServiceConsumer("Application3"))

 {

 //Connect to DotNetMQ server

 serviceConsumer.Connect();

 //Create service proxy to call remote methods

 var service = new MyMailSmsServiceProxy(serviceConsumer,

 new MDSRemoteAppEndPoint("MyMailSmsService"));

 //Call SendSms method
 service.SendSms("3221234567", "Hello service!");
 }

 }

 }

}

You can also call other methods of the service, and get return values as regular method calls. Actually, your method calls are translated to reliable messages. For instance, even if the remote application (MyMailSmsService) is not running when SendSms is called, it is called when the service starts to run, so your method calls are also guarantied to be called.

You can change the transmit rule for messaging using the TransmitRule property of the service proxy. If a service method returns void, its transmit rule is StoreAndForward by default. If a service method returns a value, the method call can not be made reliable (since the method call is synchronous and waiting a result), it's rule is DirectlySend.

You can choose any type as method parameters. If it is a primary type (string, int, byte...) there is no need for additional settings but if you want to use your own classes as a method parameter, the class must be marked as Serializable since DotNetMQ uses binary serialization for parameters.

Note that you must register MyMailSmsService and Application3 to DotNetMQ before running this sample.

Web Services Support

Surely, you can connect to DotNetMQ in a Web Service since it is also a .NET application. But, what if you want to write an ASP.NET Web method to handle messages for an application (and can reply with a message in the same context)? Web Services are suitable for such Request/Reply style method calls.

DotNetMQ supports ASP.NET web services and can deliver messages to Web Services. There is a template web service in samples (in download files) to accomplish that. It is defined as below:

[image: image26.png]

Collapse

using System;

using System.Web.Services;

using MDS.Client.WebServices;

[WebService(Namespace = "http://www.dotnetmq.com/mds")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class MDSAppService : WebService

{

 /// <summary>
 /// MDS server sends messages to this method.

 /// </summary>
 /// <param name="bytesOfMessage">Byte array form of message</param>
 /// <returns>Response message to incoming message</returns>
 [WebMethod(Description = "Receives incoming messages to this web service.")]

 public byte[] ReceiveMDSMessage(byte[] bytesOfMessage)

 {

 var message = WebServiceHelper.DeserializeMessage(bytesOfMessage);

 try
 {

 var response = ProcessMDSMessage(message);

 return WebServiceHelper.SerializeMessage(response);

 }

 catch (Exception ex)

 {

 var response = message.CreateResponseMessage();

 response.Result.Success = false;

 response.Result.ResultText =

 "Error in ProcessMDSMessage method: " + ex.Message;

 return WebServiceHelper.SerializeMessage(response);

 }

 }

 /// <summary>
 /// Processes incoming messages to this web service.

 /// </summary>
 /// <param name="message">Message to process</param>
 /// <returns>Response Message</returns>
 private IWebServiceResponseMessage

 ProcessMDSMessage(IWebServiceIncomingMessage message)

 {

 //Process message

 //Send response/result

 var response = message.CreateResponseMessage();

 response.Result.Success = true;

 return response;

 }

}

You do not change the ReceiveMDSMessage method and must process the message in the ProcessMDSMessage method as shown above. Also, you must define the address of your Web Service in MDSSettings.xml as shown below. You can also add Web Services using the DotNetMQ management tool.

[image: image27.png]

Collapse

 ...

 <Applications>
 <Application Name="SampleWebServiceApp">
 <Communication Type="WebService"

 Url="http://localhost/SampleWebApplication/SampleService.asmx" />
 </Application>
 </Applications>
 ...

Performance of DotNetMQ

There are some test results for messaging in DotNetMQ:

Messaging:

· 10,000 messages in ~25 seconds as persistent (~400 messages/second).

· 10,000 messages in ~3.5 seconds as non-persistent (~2,850 messages/second).

Method Calls (in DotNetMQ Services)

· 10,000 method calls in ~25 seconds as persistent (~400 calls/second).

· 10,000 method calls in ~8.7 seconds as non-persistent (~1,150 calls/second).

Test Platform: Intel Core 2 Duo 3,00 GHz CPU. 2 GB RAM PC. Messages/calls are made between two applications running on the same computer.

References

· [1] Book: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe, Bobby Woolf (Addison Wesley, 2003).

History

· 23.05.2011 (DotNetMQ v0.9.1.0)

· Added Microsoft SQL Server database support.

· Changed MySQLConnectionString setting to ConnectionString.

· Source code updated.

· Article updated according to changes.

· 16.05.2011 (DotNetMQ v0.9.0.0)

· Added sample Web Service template to downloads.

· Some fixes and additions to the article.

· 09.05.2011 (DotNetMQ v0.9.0.0)

· First published.

License

This article, along with any associated source code and files, is licensed under The GNU Lesser General Public License (LGPLv3)
